skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jones, Nathan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. Abstract The onset of the COVID-19 pandemic and associated long-term shifts to virtual instruction among most US schools presented notable challenges among education researchers. Ongoing projects conducted in school settings experienced sudden losses of access to teacher and student participants, in many cases leading to severe interruptions to data collection efforts. Perhaps most notably, upon returns to in-person instruction in the 2021/22 academic year most schools instigated strict policies limiting the number of non-school personnel who could enter school buildings, including researchers conducting in-person data collections. As such, many researchers had to find alternative means to gather data. In this paper, we offer a new protocol that we created in response to these challenges that allows for the secure and fully remote collection of video data in school settings. This new protocol not only addressed the immediate needs of the focal study but also addresses some of the most notable barriers to collecting classroom video data in the field of education research at large. In this paper, we describe the initial development and application of this protocol among a local study of elementary teachers, as well as the scaling of this protocol in a study of elementary teachers in multiple states. It is our hope that this protocol can expand education researchers’, practitioners’, and policymakers’ access to classroom video data. 
    more » « less
  3. Abstract The transport of meltwater through porous snow is a fundamental process in hydrology that remains poorly understood but essential for more robust predictions of how the cryosphere will respond under climate change. Here, we propose a continuum model that resolves the nonlinear coupling of preferential melt flow and the nonequilibrium thermodynamics of ice‐melt phase change at the Darcy scale. We assume that the commonly observed unstable melt infiltration is due to the gravity fingering instability and capture it using the modified Richards equation, which is extended with a higher‐order term in saturation. Our model accounts for changes in porosity and the thermal budget of the snowpack caused by melt refreezing at the continuum scale, based on a mechanistic estimate of the ice‐water phase change kinetics formulated at the pore scale. We validate the model in 1D against field data and laboratory experiments of infiltration in snow and find generally good agreement. Compared to existing theory of stable melt infiltration, our 2D simulation results show that preferential infiltration delivers melt faster to deeper depths, and as a result, changes in porosity and temperature can occur at deeper parts of the snow. The simulations also capture the formation of vertical low porosity annulus known as ice pipes, which have been observed in the field but lack mechanistic understanding to date. Our results demonstrate how melt refreezing and unstable infiltration reshape the porosity structure of snow and impacts thermal and mass transport in highly nonlinear ways that are not captured by simpler models. 
    more » « less
  4. Workplace environments are characterized by frequent interruptions that can lead to stress. However, measures of stress due to interruptions are typically obtained through self-reports, which can be affected by memory and emotional biases. In this paper, we use a thermal imaging system to obtain objective measures of stress and investigate personality differences in contexts of high and low interruptions. Since a major source of workplace interruptions is email, we studied 63 participants while multitasking in a controlled office environment with two different email contexts: managing email in batch mode or with frequent interruptions. We discovered that people who score high in Neuroticism are significantly more stressed in batching environments than those low in Neuroticism. People who are more stressed finish emails faster. Last, using Linguistic Inquiry Word Count on the email text, we find that higher stressed people in multitasking environments use more anger in their emails. These findings help to disambiguate prior conflicting results on email batching and stress. 
    more » « less